A Parsimonious Model for Intraday European Option Pricing
نویسندگان
چکیده
A stochastic model for pure-jump diffusion (the compound renewal process) can be used as a zero-order approximation and as a phenomenological description of tick-by-tick price fluctuations. This leads to an exact and explicit general formula for the martingale price of a European call option. A complete derivation of this result is presented by means of elementary probabilistic tools. JEL G13
منابع مشابه
European option pricing of fractional Black-Scholes model with new Lagrange multipliers
In this paper, a new identification of the Lagrange multipliers by means of the Sumudu transform, is employed to btain a quick and accurate solution to the fractional Black-Scholes equation with the initial condition for a European option pricing problem. Undoubtedly this model is the most well known model for pricing financial derivatives. The fractional derivatives is described in Caputo sen...
متن کاملNumerical Solution of Pricing of European Put Option with Stochastic Volatility
In this paper, European option pricing with stochastic volatility forecasted by well known GARCH model is discussed in context of Indian financial market. The data of Reliance Ltd. stockprice from 3/01/2000 to 30/03/2009 is used and resulting partial differential equation is solved byCrank-Nicolson finite difference method for various interest rates and maturity in time. Thesensitivity measures...
متن کاملMathematical analysis and pricing of the European continuous installment call option
In this paper we consider the European continuous installment call option. Then its linear complementarity formulation is given. Writing the resulted problem in variational form, we prove the existence and uniqueness of its weak solution. Finally finite element method is applied to price the European continuous installment call option.
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملValuation of installment option by penalty method
In this paper, installment options on the underlying asset which evolves according to Black-Scholes model and pays constant dividend to its owner will be considered. Applying arbitrage pricing theory, the non-homogeneous parabolic partial differential equation governing the value of installment option is derived. Then, penalty method is used to value the European continuous installment call opt...
متن کامل